New Keynesian Model

Taisuke Nakata

—Last updated on November 16, 2020—

Graduate School of Public Policy University of Tokyo

\blacktriangleright Central bank/government

\triangleright Private sector

\blacktriangleright Central bank/government

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Agents:

 \blacktriangleright Final-goods producer

 \triangleright A continuum of intermediate-goods producers

 \blacktriangleright Government (fiscal authority)

 \blacktriangleright Central bank (monetary authority)

Household

$$
\max_{\{C_t, N_t, B_t\}_{t=1}^{\infty}} \quad \sum_{t=1}^{\infty} \beta^{t-1} \left[\frac{C_t^{1-\chi_c}}{1-\chi_c} - \frac{N_t^{1+\chi_n}}{1+\chi_n} \right] \tag{1}
$$

subject to the budget constraint

$$
P_t C_t + R_t^{-1} B_t \leq W_t N_t + B_{t-1} + P_t \Phi_t + P_t T_t \tag{2}
$$

 C_t : Consumption, N_t : the labor supply, P_t : Price of the consumption good, W_t (w_t) : nominal (real) wage, Φ_t : Profit share (dividends) of the household from the intermediate goods producers, B_t : A one-period risk free bond that pays one unit of money at period t $+1$, R_t^{-1} : the price of the bond. \mathcal{T}_t is a lump-sum transfer.KID KA KERKER KID KO

Household

In real terms, the household budget constraint is

$$
C_t + R_t^{-1} \frac{B_t}{P_t} \leq w_t N_t + \frac{B_{t-1}}{P_t} + \Phi_t + T_t
$$
 (3)

where $w_t = \frac{W_t}{P_t}$ P_t

Lagrange function:

$$
L := \sum_{t=1}^{\infty} \beta^{t-1} \left[\left(\frac{C_t^{1-\chi_c}}{1-\chi_c} - \frac{N_t^{1+\chi_n}}{1+\chi_n} \right) - \lambda_t \left(C_t + R_t^{-1} \frac{B_t}{P_t} - w_t N_t - \frac{B_{t-1}}{P_t} - \Phi_t - T_t \right) \right]
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

FONCs

$$
\frac{\partial L}{\partial C_t} : C_t^{-\chi_c} - \lambda_t = 0 \tag{4}
$$
\n
$$
\frac{\partial L}{\partial B_t} : -\frac{\lambda_t}{R_t P_t} + \beta \frac{\lambda_{t+1}}{P_{t+1}} = 0 \tag{5}
$$
\n
$$
\frac{\partial L}{\partial N_t} : -N_t^{\chi_n} + \lambda_t w_t = 0 \tag{6}
$$

Kロト K個 K K ミト K ミト 「 ミー の R (^

Combining the first two equations, we obtain

$$
\frac{C_t^{-\chi_c}}{R_t P_t} = \beta \frac{C_{t+1}^{-\chi_c}}{P_{t+1}}
$$
\n
$$
\rightarrow C_t^{-\chi_c} = \beta R_t C_{t+1}^{-\chi_c} \frac{P_t}{P_{t+1}}
$$
\n
$$
\rightarrow C_t^{-\chi_c} = \beta R_t C_{t+1}^{-\chi_c} \Pi_{t+1}^{-1}
$$

where $\Pi_t:=\frac{P_t}{P_{t-1}}.$ Rearranging the third equation, we obtain

KO K K (D) K (E) K (E) K (E) K (D) K (O)

$$
-N_t^{\chi_n} + \lambda_t w_t = 0
$$

\n
$$
\longrightarrow -N_t^{\chi_n} + C_t^{-\chi_c} w_t = 0
$$

\n
$$
\longrightarrow w_t = N_t^{\chi_n} C_t^{\chi_c}
$$

Final-goods producer

The final good producer purchases the intermediate goods $Y_{i,t}$ at the intermediate price $P_{i,t}$ and aggregates them using CES technology to produce and sell the final good Y_t to the household and government at price P_t :

$$
\max_{Y_{i,t}, i \in [0,1]} P_t Y_t - \int_0^1 P_{i,t} Y_{i,t} dt \tag{7}
$$

KORKARYKERKER POLO

subject to the CES (Constant Elsaticity of Substitution) production function

$$
Y_t = \left[\int_0^1 Y_{i,t}^{\frac{\theta-1}{\theta}} di \right]^{\frac{\theta}{\theta-1}}.
$$
 (8)

Lagrange function:

$$
L := P_t Y_t - \int_0^1 P_{i,t} Y_{i,t} dt - \mu_t \left[Y_t - \left[\int_0^1 Y_{i,t}^{\frac{\theta-1}{\theta}} dt \right]^\frac{\theta}{\theta-1} \right]
$$

Kロトメ部トメミトメミト ミニのQC

$$
\frac{\partial L}{\partial Y_t} : P_t - \mu_t = 0
$$

$$
\frac{\partial L}{\partial Y_{i,t}} : -P_{i,t} + \mu_t \frac{\theta}{\theta - 1} \left[\int_0^1 Y_{i,t}^{\frac{\theta - 1}{\theta}} dt \right]^{\frac{1}{\theta - 1}} \frac{\theta - 1}{\theta} Y_{i,t}^{\frac{-1}{\theta}}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Combining these, we obtain

$$
P_t Y_t^{\frac{1}{\theta}} Y_{i,t}^{\frac{-1}{\theta}} = P_{i,t}
$$

$$
\Leftrightarrow Y_{i,t} = \left[\frac{P_{i,t}}{P_t}\right]^{-\theta} Y_t
$$

Combining the equation above with the zero-profit condition (that is, $P_t Y_t - \int_0^1 P_{i,t} Y_{i,t} dt = 0$), we obtain

$$
P_t Y_t - \int_0^1 P_{i,t} \left[\frac{P_{i,t}}{P_t} \right]^{-\theta} Y_t di = 0
$$

$$
\Leftrightarrow P_t Y_t - Y_t \int_0^1 P_{i,t} \left[\frac{P_{i,t}}{P_t} \right]^{-\theta} di = 0
$$

Note that the zero profit condition is implied by perfect competition.

KO K K Ø K K E K K E K V K K K K K K K K K

Dividing by Y_t ,

$$
P_t = \int_0^1 P_{i,t} \left[\frac{P_{i,t}}{P_t} \right]^{-\theta} di
$$

\n
$$
\Leftrightarrow P_t = P_t^{\theta} \int_0^1 P_{i,t}^{1-\theta} di
$$

\n
$$
\Leftrightarrow P_t^{1-\theta} = \int_0^1 P_{i,t}^{1-\theta} di
$$

\n
$$
\Leftrightarrow P_t = \left[\int_0^1 P_{i,t}^{1-\theta} di \right]^\frac{1}{1-\theta}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Intermediate-goods producers

A continuum of intermediate goods producers indexed by i:

$$
\max_{P_{i,t}, Y_{i,t}, N_{i,t}} \sum_{t=1}^{\infty} \beta^{t-1} \lambda_t \frac{1}{P_t} \left[(1+\tau) P_{i,t} Y_{i,t} - W_t N_{i,t} - P_t \frac{\varphi}{2} \left[\frac{P_{i,t}}{P_{i,t-1}} - 1 \right]^2 Y_t \right]
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

subject to

$$
Y_{i,t} = \left[\frac{P_{i,t}}{P_t}\right]^{-\theta} Y_t, \quad Y_{i,t} = N_{i,t}
$$

 λ_t is the Lagrange multiplier on the household's budget constraint at time t and $\beta^{t-1}\lambda_t$ is the marginal value of an additional profit to the household. The positive time zero price is the same across firms (i.e. $P_{i,0} = P_0 > 0$).

 τ is a production subsidy (later used to make the steady state "efficient").

$$
P_t \frac{\varphi}{2} \left[\frac{P_{i,t}}{P_{i,t-1}} - 1 \right]^2 Y_t
$$
: Quadratic price adjustment costs.

Interpretation: $\frac{\varphi}{2} \left[\frac{P_{i,t}}{P_{i,t-1}} \right]$ $\left[\frac{P_{i,t}}{P_{i,t-1}}-1\right]^2$ is the proportion of the aggregate final goods firms would have to purchase if the firm wants to change its price from yesterday's price.
All the series are the series on the series of Lagrange function:

$$
\begin{aligned}\n\max_{P_{i,t}, Y_{i,t}, N_{i,t}} \quad & \sum_{t=1}^{\infty} \beta^{t-1} \lambda_t \Bigg[(1+\tau) P_{i,t} Y_{i,t} - W_t N_{i,t} \\
&\quad - P_t \frac{\varphi}{2} \left[\frac{P_{i,t}}{P_{i,t-1}} - 1 \right]^2 Y_t \\
&\quad - \mu_{i,t} \left(Y_{i,t} - \left[\frac{P_{i,t}}{P_t} \right]^{-\theta} Y_t \right) \\
&\quad - \phi_{i,t} \left(Y_{i,t} - N_{i,t} \right) \Bigg]\n\end{aligned}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

$$
\frac{\partial L}{\partial P_{i,t}} : \n\frac{\lambda_t}{P_t} \left[(1+\tau) Y_{i,t} - \varphi \left(\frac{P_{i,t}}{P_{i,t-1}} - 1 \right) \frac{1}{P_{i,t-1}} P_t Y_t - \mu_{i,t} \theta \left(\frac{P_{i,t}}{P_t} \right)^{-\theta - 1} \frac{Y_t}{P_t} \right] \n+ \beta \frac{\lambda_{t+1}}{P_{t+1}} \varphi \left(\frac{P_{i,t+1}}{P_{i,t}} - 1 \right) \frac{P_{i,t+1}}{P_{i,t}^2} P_{t+1} Y_{t+1} = 0
$$

K ロ K K d K K B K K B K X A K K K G K C K

$$
\frac{\partial L}{\partial Y_{i,t}} : (1+\tau)P_{i,t} - \mu_{i,t} - \phi_{i,t} = 0
$$

$$
\frac{\partial L}{\partial N_{i,t}} : -W_t + \phi_{i,t} = 0
$$

Combining them, we obtain

$$
\lambda_{t} \left[(1+\tau) Y_{i,t} - \varphi \left(\frac{P_{i,t}}{P_{i,t-1}} - 1 \right) \frac{P_{t}}{P_{i,t-1}} Y_{t} \right] + (W_{t} - (1+\tau) P_{i,t}) \theta \left(\frac{P_{i,t}}{P_{t}} \right)^{-\theta - 1} \frac{Y_{t}}{P_{t}} \right] + \beta \frac{\lambda_{t+1} P_{t}}{P_{t+1}} \varphi \left(\frac{P_{i,t+1}}{P_{i,t}} - 1 \right) \frac{P_{i,t+1}}{P_{i,t}^{2}} P_{t+1} Y_{t+1} = 0
$$

KE K K Ø K K E K K E K V R K K K K K K K K

Imposing that (i) the time zero price is the same across firms (i.e. $P_{i,0} = P_0 > 0$) and that (ii) prices are the same across firms for all time $t>0$ $(P_{i,t}=P_{j,t}=P_t,$ and thus $Y_{i,t} = Y_{j,t} = Y_t$, $\forall i \neq j$,

$$
\lambda_{t} \left[(1+\tau)Y_{t} - \varphi \left(\Pi_{t} - 1 \right) \Pi_{t} + \left(W_{t} - (1+\tau)P_{t} \right) \theta \frac{Y_{t}}{P_{t}} \right] + \beta \frac{\lambda_{t+1}}{\Pi_{t+1}} \varphi \left(\Pi_{t+1} - 1 \right) \frac{P_{t+1}}{P_{t}^{2}} P_{t+1} Y_{t+1} = 0
$$

KORKAR KERKER SAGA

Eventually, we obtain

$$
\begin{aligned} &Y_t C_t^{-\chi_c} \left[\varphi \left(\Pi_t - 1 \right) \Pi_t - (1 + \tau) (1 - \theta) - \theta w_t \right] \\ =& \beta Y_{t+1} C_{t+1}^{-\chi_c} \varphi \left(\Pi_{t+1} - 1 \right) \Pi_{t+1} \end{aligned}
$$

Market clearing conditions

The market clearing conditions for the final good, labor and government bond are given by

$$
Y_{t} = C_{t} + \int_{0}^{1} \frac{\varphi}{2} \left[\frac{P_{i,t}}{P_{i,t-1}} - 1 \right]^{2} Y_{t} di
$$
 (9)

$$
N_t = \int_0^1 N_{i,t} di \tag{10}
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Private-sector equilibrium

Given P_0 and a policy instrument $\{R_t\}_{t=1}^\infty$, an equilibrium consists of allocations $\{C_t, N_t, N_{i,t}, Y_t, Y_{i,t}\}_{t=1}^{\infty}$, prices $\{W_t,$ P_t , $P_{i,t}\}_{t=1}^{\infty}$ such that (i) given the determined prices and policies, allocations solve the problem of the household, (ii) $P_{i,t}$ solves the problem of firm *i*, and (iii) all markets clear.

$$
\{C_t, Y_t, N_t, \Pi_t, w_t, R_t\}
$$

$$
C_t^{-\chi_c} = \beta R_t C_{t+1}^{-\chi_c} \Pi_{t+1}^{-1}
$$
 (11)

$$
w_t = N_t^{\chi_n} C_t^{\chi_c} \tag{12}
$$

$$
\frac{Y_t}{C_t^{\chi_c}}\left[\varphi\left(\Pi_t - 1\right)\Pi_t - (1 - \theta) - \theta(1 - \tau)w_t\right]
$$
\n
$$
= \beta \frac{Y_{t+1}}{C_{t+1}^{\chi_c}} \varphi\left(\Pi_{t+1} - 1\right)\Pi_{t+1} \tag{13}
$$

$$
Y_t = C_t + \frac{\varphi}{2} \left[\Pi_t - 1 \right]^2 Y_t
$$
\n
$$
Y_t = N_t
$$
\n(14)

K ロ K K d K K B K K B K X A K K K G K C K

\blacktriangleright Central bank/government

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Government (Fiscal Authority)

The supply of the government bond (B_t^g) $t_t¹⁸$) is zero. The market clearning condition for the bond is given by

$$
B_t = 0.\t\t(16)
$$

The government budget constraint is given by

$$
P_t T_t + \tau p_t y_t = 0 \tag{17}
$$

KORKARYKERKER POLO

This equilibrium condition only determines T_t and does not affect other parts of the model.

Three cases:

 \triangleright CB follows an interest-rate feedback rule.

 \triangleright CB optimizes under commitment (Ramsey policy)

 \triangleright CB optimizes under discretion (Markov-perfect policy)

Interest-rate feedback rule

CB follows an interest-rate feedback rule

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Interest-rate feedback rule

Economists often assume that the central bank is following a particular interest-rate feedback rule.

 \blacktriangleright Easier to work with.

 \blacktriangleright Easier to communicate the results with non-experts.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Below is a list of rules that are often considered in policy debates:

KOD KAR KED KED E YOUN

 \blacktriangleright Taylor rule $R_t = \max \left[1, \frac{1}{\beta} \Pi_t^{\phi_{\pi}}\right]$ \blacktriangleright Inertial Taylor rule \blacktriangleright $R_t = \max\left[1, \frac{1}{\beta}\right]$ $\frac{1}{\beta}R_{t-1}^{\rho_r}\Pi_t^{(1-\rho_r)\phi_{\pi}}\Big]$ \blacktriangleright Price-level targeting $R_t = \max\left[1, \frac{1}{\beta}\right]$ $\frac{1}{\beta} \left[\frac{P_t}{P^*} \right]^{ \phi_p}$ \blacktriangleright Nominal-income targeting $R_t = \max\left[1, \frac{1}{\beta}\right]$ $\frac{1}{\beta} \left[\frac{P_t Y_t}{P^* Y_{ss}} \right]^{ \phi_n}$

Taylor-rule equilibrium $\{C_t, Y_t, N_t, \Pi_t, w_t, R_t\}$:

$$
C_t^{-\chi_c} = \beta R_t C_{t+1}^{-\chi_c} \Pi_{t+1}^{-1}
$$
\n
$$
w_t = N_t^{\chi_n} C_t^{\chi_c}
$$
\n(19)

$$
\frac{Y_t}{C_t^{\chi_c}}\left[\varphi\left(\Pi_t - 1\right)\Pi_t - (1 - \theta)(1 + \tau) - \theta w_t\right]
$$
\n
$$
= \beta \frac{Y_{t+1}}{C_{t+1}^{\chi_c}} \varphi\left(\Pi_{t+1} - 1\right)\Pi_{t+1} \tag{20}
$$

$$
Y_t = C_t + \frac{\varphi}{2} \left[\Pi_t - 1 \right]^2 Y_t \tag{21}
$$

$$
Y_t = N_t
$$
\n
$$
R_t = \max\left[1, \frac{1}{\beta} \Pi_t^{\phi_\pi}\right]
$$
\n(22)\n(23)

CB optimizes under commitment

 \blacktriangleright a.k.a. "Optimal commitment policy," "Ramsey policy"

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Optimal commitment policy

The optimization problem of the central bank with commitment at the beginnig of time one is

$$
\max_{\{C_t, Y_t, N_t, w_t, \Pi_t, R_t\}_{t=0}^{\infty}} \quad \sum_{t=0}^{\infty} \beta^t \left[\frac{C_t^{1-\chi_c}}{1-\chi_c} - \frac{N_t^{1+\chi_n}}{1+\chi_n} \right] \quad (24)
$$

subject to the private-sector equilibrium conditions for all $t > 1$.

- \blacktriangleright The Ramsey equilibrium is defined as $\{C_t, Y_t, N_t, w_t, \Pi_t, R_t\}_{t=1}^{\infty}$ that solves this otpimization problem.
- \triangleright Note that the central bank optimizes only at the beginning of time one; it does not optimize each period.
All the services are the services on the service on the service on the service of the se

The Lagrange associated with [24](#page-31-0) is

$$
L_{RAM} = \sum_{t=1}^{\infty} \beta^{t-1} \left[\left[\frac{C_{t}^{1-\chi_{c}}}{1-\chi_{c}} - \frac{N_{t}^{1+\chi_{n}}}{1+\chi_{n}} \right] \right.+ \phi_{1,t} \left[\frac{C_{t}^{-\chi_{c}}}{R_{t}} - \beta C_{t+1}^{-\chi_{c}} \Pi_{t+1}^{-1} \right]+ \phi_{2,t} \left[w_{t} - N_{t}^{\chi_{n}} C_{t}^{\chi_{c}} \right]+ \phi_{3,t} \left[\frac{Y_{t}}{C_{t}^{\chi_{c}}} \left[\varphi \left(\Pi_{t} - 1 \right) \Pi_{t} - (1 - \theta) (1 + \tau) - \theta w_{t} \right] \right.- \beta \frac{Y_{t+1}}{C_{t+1}^{\chi_{c}}} \varphi \left(\Pi_{t+1} - 1 \right) \Pi_{t+1} \right]+ \phi_{4,t} \left[Y_{t} - C_{t} - \frac{\varphi}{2} \left[\Pi_{t} - 1 \right]^{2} Y_{t} \right]+ \phi_{5,t} \left[Y_{t} - N_{t} \right]
$$

FONCs for $t \geq 2$ are given by:

$$
\frac{\partial L_{RAM}}{\partial C_{t}} = C_{t}^{-\chi_{c}} + \phi_{1,t}(-\chi_{c}C_{t}^{-\chi_{c}-1}R_{t}^{-1})
$$
\n
$$
+ \phi_{2,t}(-\chi_{c}N_{t}^{\chi_{n}}C_{t}^{\chi_{c}-1})
$$
\n
$$
+ \phi_{3,t}(-\chi_{c}C_{t}^{-\chi_{c}-1}Y_{t}\left[\varphi\left(\Pi_{t}-1\right)\Pi_{t}-\left(1-\theta\right)\left(1+\tau\right)-\theta W_{t}\right])
$$
\n
$$
+ \phi_{4,t}(-1)
$$
\n
$$
- \phi_{1,t-1}(-\chi_{c}C_{t}^{-\chi_{c}-1}\Pi_{t}^{-1})
$$
\n
$$
- \phi_{3,t-1}\left(-\chi_{c}C_{t}^{-\chi_{c}-1}Y_{t}\varphi\left(\Pi_{t}-1\right)\Pi_{t}\right) = 0
$$

$$
\frac{\partial L_{RAM}}{\partial Y_t} = \phi_{3,t} C_t^{-\chi_c} \left[\varphi \left(\Pi_t - 1 \right) \Pi_t - (1 - \theta) (1 + \tau) - \theta w_t \right]
$$

$$
+ \phi_{4,t} (1 - \frac{\varphi}{2} \left[\Pi_t - 1 \right]^2) + \phi_{5,t}
$$

$$
- \phi_{3,t-1} \varphi C_t^{-\chi_c} \left(\Pi_t - 1 \right) \Pi_t = 0
$$

$$
\frac{\partial L_{RAM}}{\partial N_t} = -N_t^{\chi_n} + \phi_{2,t}(-\chi_n N_t^{\chi_n-1} C_t^{\chi_c}) - \phi_{5,t} = 0
$$

K ロ X イロ X K ミ X K ミ X ミ X D V Q (V)

$$
\frac{\partial L_{RAM}}{\partial w_t} = \phi_{2,t} + \phi_{3,t}(-Y_t C_t^{-\chi_c} \theta) = 0
$$

$$
\frac{\partial L_{RAM}}{\partial \Pi_t} = \phi_{3,t} (Y_t C_t^{-\chi_c} \varphi(2\Pi_t - 1))
$$

$$
+ \phi_{4,t} (-\varphi(\Pi_t - 1)Y_t)
$$

$$
-\phi_{1,t-1}(-C_t^{-\chi_c} \Pi_t^{-2})
$$

$$
-\phi_{3,t-1} Y_t C_t^{-\chi_c} \varphi(2\Pi_t - 1) = 0
$$

$$
\frac{\partial L_{RAM}}{\partial R_t} = -\phi_{1,t} C_t^{-\chi_c} R_t^{-2} = 0
$$

FONCs for $t = 1$ are given by:

$$
\frac{\partial L_{RAM}}{\partial C_{t}} = C_{t}^{-\chi_{c}} + \phi_{1,t}(-\chi_{c}C_{t}^{-\chi_{c}-1}R_{t}^{-1})
$$
\n
$$
+ \phi_{2,t}(-\chi_{c}N_{t}^{\chi_{n}}C_{t}^{\chi_{c}-1})
$$
\n
$$
+ \phi_{3,t}(-\chi_{c}C_{t}^{-\chi_{c}-1}Y_{t}[\varphi(\Pi_{t}-1)\Pi_{t}-(1-\theta)(1+\tau)-\theta w_{t}])
$$
\n
$$
+ \phi_{4,t}(-1) = 0
$$

$$
\frac{\partial L_{RAM}}{\partial Y_t} = \phi_{3,t} C_t^{-\chi_c} \left[\varphi \left(\Pi_t - 1 \right) \Pi_t - (1 - \theta) (1 + \tau) - \theta w_t \right] + \phi_{4,t} (1 - \frac{\varphi}{2} \left[\Pi_t - 1 \right]^2) + \phi_{5,t} = 0
$$

KOKK@KKEKKEK E 1990

$$
\frac{\partial L_{RAM}}{\partial N_t} = -N_t^{\chi_n} + \phi_{2,t}(-\chi_n N_t^{\chi_n-1} C_t^{\chi_c}) - \phi_{5,t} = 0
$$

Kロトメ部トメミトメミト ミニのQC

$$
\frac{\partial L_{RAM}}{\partial w_t} = \phi_{2,t} + \phi_{3,t}(-Y_t C_t^{-\chi_c} \theta) = 0
$$

$$
\frac{\partial L_{RAM}}{\partial \Pi_t} = \phi_{3,t} (Y_t C_t^{-\chi_c} \varphi(2\Pi_t - 1)) + \phi_{4,t} (-\varphi(\Pi - 1)Y_t) = 0
$$

$$
\frac{\partial L_{RAM}}{\partial R_t} = -\phi_{1,t} C_t^{-\chi_c} R_t^{-2} = 0
$$

CB optimizes under discretion

▶ a.k.a. "Optimal discretionary policy," "Markov-perfect policy"

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

The time-t Lagrangean is

$$
L_{MP,t} = \frac{C_t^{1-\chi_c}}{1-\chi_c} - \frac{N_t^{1+\chi_n}}{1+\chi_n} + \beta V_{t+1}
$$

+ $\phi_{1,t} \left[\frac{C_t^{-\chi_c}}{R_t} - \beta C_{t+1}^{-\chi_c} \Pi_{t+1}^{-1} \right]$
+ $\phi_{2,t} [w_t - N_t^{\chi_n} C_t^{\chi_c}]$
+ $\phi_{3,t} \left[\frac{Y_t}{C_t^{\chi_c}} \left[\varphi \left(\Pi_t - 1 \right) \Pi_t - (1 - \theta) (1 + \tau) - \theta w_t \right] - \beta \frac{Y_{t+1}}{C_{t+1}^{\chi_c}} \varphi \left(\Pi_{t+1} - 1 \right) \Pi_{t+1} \right]$
+ $\phi_{4,t} [Y_t - C_t - \frac{\varphi}{2} [\Pi_t - 1]^2 Y_t]$
+ $\phi_{5,t} [Y_t - N_t]$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 Y 9 Q @

$$
\frac{\partial L_{MP,t}}{\partial C_t} = C_t^{-\chi_c} + \phi_{1,t}(-\chi_c C_t^{-\chi_c - 1}) \n+ \phi_{2,t}(-\chi_c N_t^{\chi_n} C_t^{\chi_c - 1}) \n+ \phi_{3,t}(-\chi_c C_t^{-\chi_c - 1} Y_t [\varphi (\Pi_t - 1) \Pi_t - (1 + \tau)(1 - \theta) - \theta w_t]) \n+ \phi_{4,t}(-1) = 0
$$

$$
\frac{\partial L_{MP,t}}{\partial Y_t} = \phi_{3,t} C_t^{-\chi_c} \left[\varphi \left(\Pi_t - 1 \right) \Pi_t - (1 - \theta) (1 + \tau) - \theta w_t \right] + \phi_{4,t} (1 - \frac{\varphi}{2} \left[\Pi_t - 1 \right]^2) + \phi_{5,t} = 0
$$

K ロ K K d K K B K K B K X A K K K G K C K

$$
\frac{\partial L_{MP,t}}{\partial N_t} = -N_t^{\chi_n} + \phi_{2,t}(-\chi_n N_t^{\chi_n-1} C_t^{\chi_c}) - \phi_{5,t} = 0
$$

K ロ X イロ X K ミ X K ミ X ミ X D V Q (V)

$$
\frac{\partial L_{MP,t}}{\partial w_t} = \phi_{2,t} + \phi_{3,t}(-Y_t C_t^{-\chi_c} \theta) = 0
$$

$$
\frac{\partial L_{MP,t}}{\partial \Pi_t} = \phi_{3,t} (Y_t C_t^{-\chi_c} \varphi(2\Pi_t - 1)) + \phi_{4,t} (-\varphi(\Pi_t - 1) Y_t) = 0
$$

$$
\frac{\partial L_{MP,t}}{\partial R_t} = -\phi_{1,t} C_t^{-\chi_c} R_t^{-2} = 0
$$